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Abstract— This paper presents a new approach to guaran-
teed state estimation for non linear discrete-time systems with
a bounded description of noise and parameters. The main
result is an algorithm to compute a set that contains the states
consistent with the measured output and the given noise and
parameters. This set is represented by a zonotope. The volume
of the zonotope is minimized each sample instant solving a
convex optimization problem. Interval arithmetic is used to
calculate a guaranteed trajectory of the state process. Two
examples have been provided for clarifying the algorithm.
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tems, Optimization algorithms

I. INTRODUCTION

The problem of state estimation is important in the
theory of identification. Several approaches exist in the
literature. The stochastic approach (Kalman filter theory),
the H∞ filtering theory and the set-membership approach
can be noted.

The Kalman filter gives an optimal estimate of the
state of a given process based on output measurements.
However, an accurate model of the process and covariance
matrices of noise are needed. In this context, it is possible
to design a filter minimizing the worst-case gain of the
system [11], [14]. See [1], [2] for an extension of the
classical Kalman filtering to interval linear systems.

The set-membership approach is based on the construc-
tion of a compact set that includes, with guarantee, the
states of the system that are consistent with the measured
output and the bounded noise. Instead of using Gaussian
noise, as in the stochastic approach, a norm-bounded noise
is considered. In this paper, this approach has been adopted.

In pioneers works about set-membership estimation [17],
an ellipsoidal bounding of the state of the dynamic system
is provided. The advantage of such a choice lies in the
fact that the computational complexity of the corresponding
estimation does not depend on the numbers of observations.
The application of ellipsoidal sets to the state estimation
problem has been studied by different authors. (See, for
example, [10], [16], [4]) .

In order to obtain an increased estimation accuracy,
the use of polyhedrons was proposed [9]. Taking into
account the fact the complexity of this representation grows
considerably with the volume of measured information, an
alternative approach based on parallelotopes was presented
[3]. Minimum-volume bounding parallelotopes are used to

estimate the state of a discrete-linear dynamical system
with polynomial complexity. In [7] a guaranteed recursive
nonlinear estimator is based on an interval branch and
bound algorithm. To improve the exponential complexity,
consistency techniques are considered in [6]. Zonotopes are
proposed in [15] to build a worst-case state estimator.

In this paper, a new method for guaranteed state esti-
mation for the case of non-linear discrete process with
bounded uncertain parameters and noise is presented. Each
sample time, a guaranteed bound of the uncertain trajectory
of the system is calculated using interval arithmetic. Then,
a convex optimization problem is formulated to compute
the intersection between the bound of the uncertain trajec-
tory and the states of the system that are consistent with
the measured output. Like in [15], the calculated set is
represented by a zonotope. However, in [15] the measured
output is used to estimate the state by means of a gain K,
while here it is used to calculate the region of the state
space that are consistent with the measured outputs.

The paper is organized as follows. In section 2 the
problem is formulated. The guaranteed state estimation
algorithm is presented in section 3. Section 4 provides a
revision of the Kühn’s method [8] to compute trajectories
of non-linear systems. Sections 5 and 6 provide a bound of
the consistent state. Section 7 reports two examples. The
paper draws to a close with a section of conclusions.

II. PROBLEM FORMULATION

Consider an uncertain nonlinear discrete-time system of
the form:

xk+1 = f (xk,wk)

yk = g(xk,vk) (1)

where xk ∈ IRn is the state of the system and yk ∈ IRp

is the measured output vector at sample time k. The vector
wk ∈ IRnw represents the time varying process parameters
and process perturbation vector. On the other hand, vk ∈
IRpv is the measurement noise vector. It is assumed that
the uncertainties and initial state are bounded by known
compact sets: wk ∈W , vk ∈V and xo ∈ X0. Then, at sample
time k, the objective is to find an outer approximation of
the corresponding set of all possible states consistent with
the measured outputs and the initial state set.

Definition 1 (Exact uncertain state set): Consider a
system given by equation (1) and an initial compact state



set X0. Consider also a sequence of measured outputs
(yi)

k
1. Then, at sample time k the uncertain state set Xk is

defined as:

Xk = { xk : ∃(w j)
k−1
0 ∈W,(v j)

k
1 ∈V,x0 ∈ X0

such that (x j = f (x j−1,w j−1),yi = g(x j,v j))
k
1}

So, Xk is the set of all states, consistent with the mea-
sured output, that can be reached by the evolution of the
uncertain system at sample time k. The exact computation
of these sets is a difficult task. In order to reduce the
complexity of the computations, these sets are bounded
by means of conservative sets. These approximate sets,
denominated uncertain state sets, may be computed more
easily.

III. GUARANTEED STATE ESTIMATION ALGORITHM

In this section we introduce some definitions that allows
us to state a general procedure to obtain a bound of the
exact uncertain state set.

Definition 2 (Range): The range of a continuous func-
tion f : IRn → IR over a set X ⊂ IRn is defined as f (X) =
{ f (x) : x ∈ X }.

Definition 3 (Inclusion function): Ψ is a inclusion func-
tion of f (.) if f (X)⊆Ψ(X), ∀X .

Definition 4 (Consistent state set): Given system (1)
and a measured output yk, the consistent state set is defined
by Xyk = { x ∈ IRn : yk ∈ g(x,V ) } .

Let us suppose that at sample time k a measured output
yk is obtained and that a bound of the exact uncertain state
set at time k− 1 is available (this bound will be denoted
X̃k−1). Then, the following algorithm estimates a bound of
the exact uncertain state set:

Algorithm 1
Step 1: Use an inclusion function to bound the
uncertain trajectory of the nonlinear system: X̄k =
Ψ(X̃k−1,W ).
Step 2: Compute a bound of the consistent state
set X e

yk
⊇ Xyk .

Step 3: Compute a tight bound of the set inter-
section X̄k ∩X e

yk
⊆ X̃k.

End algorithm
Theorem 1: At sample time k, consider a system given

by (1), a measured output yk, a bound of the uncertain state
set at time k−1 (denoted X̃k−1). Suppose that X̃k is com-
puted by Algorithm 1 then, X̃k is an outer approximation
of the exact uncertain state set Xk ⊆ X̃k.

PROOF:

Xk = f (Xk−1,W )∩Xyk ⊆ f (X̃k−1,W )∩X e
yk
⊆ X̃k

To obtain the uncertain trajectory of the non-linear
discrete time system in Step 1, we propose to use Künh’s
method. This method represents the uncertain sets by
zonotopes [8]. To compute the set intersection of Step 3,
an optimization problem that minimizes the volume of X̃k

will be presented in section 5.

IV. COMPUTING UNCERTAIN TRAJECTORIES

A. Interval arithmetic

An interval number X = [a,b] is the set { x : a ≤ x ≤
b } of real numbers between and including the endpoints
a and b. Interval arithmetic is an arithmetic defined on
sets of intervals, rather than sets of real numbers. The
interval arithmetic is based on operations applied to sets
of intervals.

Let II be the set of real compact intervals [a,b] with
a,b ∈ IR . Operations in II satisfy the expression:

A op B = { a op b : a ∈ A,b ∈ B } (2)

In this way, the four basic interval operations [13] are:

[a,b]+ [c,d] = [a+ c,b+d] (3)

[a,b]− [c,d] = [a−d,b− c]

[a,b]∗ [c,d] = [min(ac,ad,bc,bd),max(ac,ad,bc,bd)]

[a,b]/[c,d] = [a,b]∗ [1/d,1/c], if 0 /∈ [c,d]

An extension of the interval arithmetic to include 0 in divi-
sion can be found in [5]. The interval extension of standard
functions {sin,cos, tan,arctan,exp, ln,abs,sqr,sqrt} is pos-
sible too.

Definition 5 (Unitary interval): The unitary interval is
B = [−1,1] .

Definition 6 (Box): A box is an interval vector. An
interval hull of a set X ⊆ IRn , denoted by ¤X ,
is a box that satisfies X ⊆ ¤X . Given a box ¤X =
([a1,b1], . . . , [an,bn])

>, mid(¤X) denotes its center and
diam(¤X) = (b1−a1, . . . ,bn−an)

>.
Definition 7 (Unitary box): A unitary box, denoted by

Bm, is a box compound by m unitary intervals.
Definition 8 (Natural interval extension): If f : IRn →

IR is a function computable as an expression, algorithm or
computer program involving the four elementary arithmetic
operations interspersed with evaluations of standard func-
tions then, a natural interval extension of f , denoted ¤ f , is
obtained replacing each occurrence of each variable by the
corresponding interval variable, by executing all operations
according to formulas (3) and by computing ranges of the
standard functions. [7]

Theorem 2: A natural interval extension ¤ f of a con-
tinuous function f : IRn → IR over a box X ⊆ IRn satisfies
that f (X) ⊆ ¤ f (X) . This is the fundamental theorem of
the interval arithmetic [12].

Theorem 3 (Mean Value Theorem): Let f : IRn → IR be
differentiable at every point in an open set containing the
line segment L joining two vectors x,y ∈ IRn. There is a
vector x0 ∈ L such that: f (x)− f (y) = ∇ f (x0)(x−y). Sup-
pose X ∈ IIn such x,y ∈ X then applying the fundamental
theorem of the interval arithmetic: f (x)∈ f (y)⊕∇ f (X)(x−
y). This is the mean value extension.

Definition 9 (Mean value extension): Suppose a func-
tion f : IRn → IR with continuous derivatives in X ∈ IIn.
Suppose also a real vector c ∈ X . Then, the mean value



extension for f over X is defined by fmve(X) = f (c)⊕
¤∇x f (X)(X−c), where ¤∇x f (X) is an interval enclosure
for the range of ∇ f (X) over X .

B. Künh´s method

The Künh´s method is a procedure that allows us to
bound the orbits of discrete dynamical systems [8]. The
evolution of the system is approximated by a high order
zonotope. A zonotope is the Minkowski sum of a set of
parallelepipeds. In [8] sub-exponential overestimation is
proven. These concepts are defined below.

Definition 10 (Minkowski sum): The Minkowski sum of
two sets X and Y is defined by X⊕Y = { x+y : x∈ X , y∈
Y }.

Definition 11 (Zonotope of order m): A zonotope Z of
order m is the Minkowski sum of m parallelepipeds: Z =
P1⊕P2⊕ ...⊕Pm

A parallelepiped is a linear image P = MBq where M
is a square matrix and Bq is the unitary box in IRq. The
order m is a measure for the geometrical complexity of the
zonotopes.

Theorem 4 (Zonotope inclusion): Given a family of
zonotopes represented by Z = p⊕MBm where p ∈ IRn is
a real vector, M ∈ IIn×m is an interval matrix and Bm ∈ IIm

is a unitary box. A zonotope inclusion, denoted by ¦Z, is

defined by ¦Z = p⊕
[

mid(M) G
]

[

Bm

Bn

]

= p⊕JBm+n

where G ∈ IRn×n is a diagonal matrix that satisfies Gii =
m
∑
j=1

diam(Mi j)
2 , i = 1, . . . ,n. Under these definitions it results

that:
Z ⊆ ¦Z

PROOF:
Let us suppose that z ∈ Z. Then, it is clear that there

is b ∈ Bm such that: z ∈ p⊕Mb. In fact, adding and
substracting mid(M)b:

z ∈ (p+mid(M)b)⊕ (M−mid(M))b

It is not difficult to see that (M−mid(M))b⊆GBn. Thus,

z ∈ (p+mid(M)b)⊕GBn ⊆ p⊕mid(M)Bm⊕GBn = ¦Z

Theorem 5: Given a function f (x,w) where x ∈ IRn and
w∈ IRnw , a zonotope X = p⊕HBm and a box W. Compute
the following natural interval extensions:

• A zonotope q⊕SBn =¤ f (p,W ).
• An interval matrix M =¤∇x f (X ,W )H.
• A zonotope Ψ(X ,W ) = q⊕ SBn⊕¦MBm = q⊕HqBl

with l = 2n+m

Under previous assumptions, it results that f (X ,W ) ⊆
Ψ(X ,W )

PROOF:
Given w ∈W , the application of the mean value exten-

sion yields:

f (X ,w)⊆ f (p,w)⊕ (∇x f (X ,w))HBm

Thus,

f (X ,W )⊆ f (p,W )⊕ (∇x f (X ,W ))HBm ⊆

q+SBn⊕¤∇x f (X ,W )HBm =

q⊕SBn⊕MBm ⊆

q⊕SBn⊕¦MBm = q⊕HqBl

Therefore, the operator of theorem 5 can be used like an
inclusion function in the Step 1 of Algorithm 1. Note that
this inclusion is not very conservative because it makes a
sort of linearization of the range of the function. With this
proposal, at each sample time, the order of the zonotope is
increased. The computational cost increases quadratically,
so it is interesting to dispose of an algorithm to bound a
high order zonotope by a lower order one. This algorithm
can be found in [8].

V. BOUND ON THE CONSISTENT STATE SET

In this section, a bound on the consistent state set is
provided. This bound is obtained as the intersection of p
strips in the state space. Given a measure yk ∈ IRp, the
consistent state set was defined in section III as:

Xyk = { x ∈ IRn : yk ∈ g(x,V ) }

Define now sets Xyk(i), i = 1, . . . , p, as the region of the
state space consistent with the i-th component of output
yk:

Xyk(i) = { x ∈ IRn : yk(i) ∈ gi(x,V ) }

where gi(x,v) denotes the i−th component of g(x,v)∈ IRp.
With this definition it is clear that:

Xyk ⊆
p

⋂

i=1

Xyk(i)

In what follows, we will show how to bound Xyk(i) by
means of a strip in the state space. Let us suppose that
xk is guaranteed to belong to zonotope X̄k. Then, the i− th
component of the measured output yk can be used to obtain
a sharper bound of the state. In effect, xk ∈ X̄k ∩Xyk(i).
The following property shows that it is possible to bound
X̄k ∩Xyk(i) by means of the intersection of X̄k and a strip
in the state space.

Property 1: Let us suppose that zonotope X̄k and mea-
sured output yk are given. Obtain, by means of interval
arithmetic, vector ci ∈ IRn and scalars di,σi ∈ IR such that:

• ci = mid (¤∇xgi(X̄k,V ))
• c>i X̄k−gi(X̄k,V )⊆ [si−σi,si +σi]

Then, defining X e
yk

(i) = { x : |c>i x− yk(i)− si| ≤ σi }, it
results that:

X̄k

⋂

Xyk(i)⊆ X̄k

⋂

X e
yk

(i)
PROOF: In effect, if x∈ X̄k

⋂

Xyk(i) then there exists v∈
V such that yk(i) = gi(x,v). Multiplying the last inequality
by -1 and adding c>i x:

c>i x− yk(i) = c>i x−gi(x,v)⊆



c>i X̄k−gi(X̄k,V )⊆ [si−σi,si +σi]

Therefore, |c>i x− yk(i)− si| ≤ σi.

VI. GUARANTEED STATE INTERSECTION

Let us suppose that xk−1 ∈ X̃k−1. Then, as it was stated in
section 3, it is possible to bound the uncertain trajectory of
the nonlinear system using interval arithmetic. In particular,
a slight modification of kühn’s method was proposed in
order to obtain a zonotope X̄k = Ψ(X̃k−1,W ) such that
f (X̃k−1,W ) ⊆ X̄k. As it was demonstrated in the last
section, the i−th component of the measured output yk can
be used to obtain a strip X e

yk
(i) such that xk ∈ X̄k ∩X e

yk
(i).

Due to the fact that X̄k is a zonotope and X e
yk

(i) a strip in
the state space, it is convenient to obtain a procedure that
bounds the intersection between a zonotope and a strip.

The next property provides a family of zonotopes (pa-
rameterized by means of vector λ) that contains the inter-
section of a zonotope and a strip. At the end of this section
we will show how to choose parameter vector λ in order to
minimize the volume of the obtained bound. Note that the
results of this section can be applied for every component
of the measured output yk.

Property 2: Given the zonotope X = p⊕HBr ⊂ IRn, the
strip S = { x ∈ IRn : |c>x− d| ≤ σ } and the vector λ,
define:

• p̂(λ) = p+λ(d− c>p)
• Ĥ(λ) =

[

(I−λc>)H σλ
]

Then,
X

⋂

S ⊆ X̂ (λ) = p̂(λ)+ Ĥ(λ)Br+1

PROOF: Let us suppose that x ∈ X
⋂

S . Then x ∈ X =
p⊕HBr. This implies that there is z ∈ Br such that:

x = p+Hz (4)

In fact, adding and substracting λc>Hz to previous equal-
ity:

x = p+λc>Hz+(I−λc>)Hz (5)

From x∈X
⋂

S it is inferred that x∈ S = { x∈ IRn : |c>x−
d| ≤ σ }. Thus, there exists w ∈ [−1,1] = B1 such that
c>x− d = σw. Taking into account equation (4) it results
that c>(p+Hz)−d = σw. That is:

c>Hz = d− c>p+σw

Substituting this equality in equation (5), the following is
obtained:

x = p+λ(d− c>p+σw)+(I−λc>)Hz =

p+λ(d− c>p)+λσw+(I−λc>)Hz =

p̂(λ)+
[

(I−λc>)H σλ
]

[

z
w

]

=

= p̂(λ)+ Ĥ(λ)

[

z
w

]

∈ X̂ (λ)

A. Minimizing the volume of the intersection

Let us suppose that we want to minimize the volume of
X̂ (λ). In this case, we should choose λ in such a way that
the volume of the zonotope X̂ (λ) = p̂(λ)⊕ Ĥ(λ)Br+1 is
minimized. That is, we are interested in the minimization
of Vol(p̂(λ)⊕ Ĥ(λ)Br+1). It is well known (see [18], [12])
that the volume of a zonotope a⊕DBm ⊂ IRn is given by:

Vol(a⊕DBm) =

N(n,m)

∑
i=1

2n
∣

∣ det
[

Ds1(i) Ds2(i) . . .Dsn(i)
]∣

∣

where N(n,m) denotes the number of different ways of
choosing n elements from a set of m. Di denotes the i-th
column of D. Integers s j(i), j = 1, . . . ,n, i = 1, . . . ,N denote
each one of the different ways of choosing n elements from
a set of m. That is, these integers satisfy:

1≤ s1(i) < s2(i) < .. . < sn(i)≤ m

Moreover, if i 6= j then:
[

s1(i) . . . sn(i)
]

6=
[

s1( j) . . . sn( j)
]

Taking into account that Ĥ(λ) =
[

(I−λc>)H σλ
]

,
the expression corresponding to the volume of X̂ (λ) is:

Vol(p̂(λ)⊕ Ĥ(λ)Br+1) =

N(n,m−1)

∑
i=1

2n
∣

∣

∣
det

[

(I−λc>)Ai

]∣

∣

∣

+
N(n−1,m−1)

∑
i=1

2n
∣

∣ det
[

(I−λc>)Bi σλ
]∣

∣

Where Ai denotes each of the different matrices that
can be obtained choosing n columns from matrix H. On
the other hand, Bi denotes each of the different matrices
that can be obtained choosing n− 1 columns from H.
Let us recall the following well known properties of the
determinant of a matrix:

• det (AB) = det (A) det (B).
• Given vectors a,b ∈ IRn: det (I+ab>) = 1+b>a.

The above equalities will be used to calculate the different
terms that appear in the expresion of the volume of X̂ (λ).
We will distinguish between two different classes of terms:

• Terms of the form det
[

(I−λc>)Ai
]

:
In this case,

det
[

(I−λc>)Ai
]

=

det (I−λc>) det (Ai) = (1− c>λ) det (Ai)

• Terms of the form det
[

(I−λc>)Bi σλ
]

:
Note that Bi − λc>Bi is obtained substracting
from each column of Bi the last column of
[

(I−λc>)Bi σλ
]

multiplied by a scalar. It is well
known that the determinant of a matrix does not
change if a column is added or substracted from
another one. This implies that:



det
[

(I−λc>)Bi σλ
]

= det
[

Bi σλ
]

Two different cases must be distinguished:
rank {Bi} < n − 1 and rank {Bi} = n − 1. If
rank {Bi} < n− 1 then det

[

Bi σλ
]

= 0. In the
following, it will be supposed that rank {Bi}= n−1.
It is clear, under this assumption, that there exists
vi such that v>i vi = 1 and v>i ∗ Bi = 0. That
is, vi is orthonormal to Imag (Bi). Therefore,
Φi =

[

Bi vi
]

is not singular. Note that:

det
[

Bi σλ
]

= det
[

Bi (vi− vi +σλ)
]

=

det
(

Φi +(σλ− vi)
[

0 0 . . . 1
])

=

det (Φi) det
(

I+Φ−1
i (σλ− vi)

[

0 0 . . . 1
])

=

det (Φi)(1+
[

0 0 . . . 1
]

Φ−1
i (σλ− vi))

Taking into account that
[

0 0 . . . 1
]

Φ−1
i = v>i :

det (Φi)(1+v>i (σλ−vi))= det (Φi)(1+σv>i λ−1)=

σ det (Φi)(v
>
i λ)

To conclude, the volume of X̂ (λ) is given by the
following expression:

Vol(p̂(λ)⊕ Ĥ(λ)Br+1) =

N(n,m−1)

∑
i=1

2n|1− c>λ|| det (Ai)|

+
N(n−1,m−1)

∑
i=1

σ2n
∣

∣ det
[

Bi vi
]∣

∣ |v>i λ|

Note that Vol(p̂(λ)⊕ Ĥ(λ)Br+1) is a convex function
of λ. This means that obtaining the vector λ that
minimizes the volume of the zonotope is a convex
problem. Therefore, specialized algorithms can be
used.

VII. EXAMPLES

A. Example 1

A benchmark problem is considered [4]. The system is
described by:

xk+1 =

[

0 −0.5
1 1+0.3δk

]

xk +0.02

[

−6
1

]

wk

yk =
[

−2 1
]

xk +0.2vk

with |δk| ≤ 1,‖wk‖∞ ≤ 1,‖vk‖∞ ≤ 1. The initial state
belongs to the box 3B2. The signal to be estimated is
zk =

[

1 0
]

xk. The order of zonotopes are limited to
m≤ 20.

Fig. 1 shows a succession of X̄k sets and how the
proposed algorithm reduces their volumes by intersection,
obtaining X̃k sets. Fig. 2 demonstrates that the algorithm
provides a guaranteed bound of the actual state of the
system.

−3 −2 −1 0 1 2 3
−6

−5

−4

−3

−2

−1

0

1

2

3

4

x1

x2

Fig. 1. Estimation by zonotopes. Dotted lines represent X̄k sets and solid
lines represent X̃k sets.
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−3

−2

−1

0
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2

3

k

x1

Fig. 2. The dotted line represents zk and the solid lines represent the
bounds of zk obtained by the presented algorithm .

B. Example 2

A nonlinear estimation example is presented here. An
isothermal gas-phase [19] reactor is charged with an initial
amount of A and B, and the species are allowed to
react according to the reversible reaction. The goal is to
reconstruct the partial pressure of each specie in the reactor
using the measurements of the total pressure of the vessel
as the reaction proceeds. The system is modelled by:

ẋ1 =−2k1x2
1 +2k2x2

ẋ2 = k1x2
1− k2x2

in which k1 = 0.16 min−1atm−1,k2 = 0.0064 min−1. The
measured output is the total pressure described by: yk =
[

1 1
]

xk +vk where ‖vk‖∞ ≤ 0.3. The initial conditions
are

x0 ∈

[

2.5
1.0

]

⊕

[

2.5 0
0 0.5

]

B2



The sampling time is 6 seconds. Note that an Extended
Kalman Filter fails for this example [19] because more than
one equilibrium point may satisfy the output equation. All
states are estimated. The order of zonotopes are limited to
m ≤ 20. Fig. 3 shows the evolution of the volume of the
guaranteed bound of the state.
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Fig. 3. Evolution of the volume of the guaranteed bound of the state

VIII. CONCLUSIONS

A new approach to guaranteed state estimation for non-
linear discrete-time systems with a bounded description of
noise and parameters has been proposed. The algorithm
computes a set of all states consistent with the measured
output and the given noise and parameters. This set is
represented by a zonotope and is calculated by interval
arithmetic. Its volume is minimized each sample instant
resolving a convex optimization problem. Two examples
have been provided for clarifying the algorithm.
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